Natural capital assets:
Drivers of environmental change:
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Conversion of wetlands for commercial purposes and resource extraction leads to loss of regional climate regulating function. | Conversion of wetlands causes the average temperature to increase by 0.77?C in all four seasons. | Human action | Medium term | Global |
Lower species mobility, thus decreased ability to disperse seeds. Altered wind and hydrological processes within a given area will affect how far seeds are dispersed. | Decreased seed dispersal by animals | Human action | Short-Mid-term | Global |
Declines in pollinator populations due to reduced access to food and nesting resources (16.5 % of vertebrate pollinator species are threatened with global extinction; in Europe, 9% of bee and butterfly species are threatened, and populations of 37% of bees and 31% of butterflies are declining) | Decreased pollination services during the peak period of pollination (i.e. spring for most crops in temperate zones). 5-8 % of global crop production would be lost if pollination services ceased. | Human action | Short term | Regional |
Changes in intensity and extension. | Vegetation alteration can degrade or cause loss of service. | Human action | Short term | Local |
Deforestation, loss of biological community. | Alters biological, mechanical and chemical weathering processes. Type of land use determines type of disturbance (tillage, agrochemicals, fertilizers, excrements, etc.) changes soil properties. | Human action | Long term | Local |
Changes to the way water flows through landscapes | Increased or decreased availability of water at the local and landscape level. | Human action | Short term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Larger doses of pollutants will reduce the ability of the atmosphere to dilute them to safe levels for humans | Rise in vehicles which are unable to meet modern pollution control requirements. Increase in pollution from motor vehicles. | Human action | Short term | Developing countries |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Elevated release of atmospheric contaminants is required to maximize dilution potential of the atmosphere. | The type of industrial plant influences emission heights - e.g. 1000MW fossil-fuel burning power plants have stacks up to 300 metres in height while nuclear power plants can have roof-level vents. | Human action | Long term | Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Alters conditions: temperature, humidity, rainfall | Pollution may alter presence and conditions of urban and suburban vegetation, may diminish plants’ capacity of gas absorption. | Human action | Short-Mid-term | Global |
Altered wind dynamics and the ability of wind to disperse seeds | Decreased dispersal distance of seeds by wind | Human action | Short term | Local |
Microbiota are sensitive to metal pollution. Toxicity of heavy metals displaces exchangeable nutrients from binding sites. | Acid rain and pollution, acidity in air, etc. alters weathering agents in the environment (water, soil, air). | Human action | Long term | Local-Global |
Suppressed rainfall in highly polluted areas due to reduced efficiency of clouds at releasing precipitation. | Decreased water balance and disrupted hydrological cycle in polluted areas | Human action | Short term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Prolonged periods of high pressure with little air movement can lead to temperature inversions (reversal of the normal decrease of air temperature with altitude). | Decrease in air flow reduces dilution effect and leads to accumulation of dust and pollutants. | Natural variation | Short term | Global |
Climatic anomalies (e.g. ENSO) create deficits and excesses in temperature and precipitation. | Regulation of regional climate is heavily impacted, e.g. an El Niño is associated with warm and very wet weather months in April–October causing major flooding in southern hemisphere countries such as Peru and Ecuador. | Natural variation | Long-term | Regional |
Alters conditions: temperature, humidity, rainfall. | Climatic conditions affect air pollution levels and absorption by vegetation. Climate changes may alter vegetation. Droughts may cause disruption of water for sound attenuation. | Human action or Natural variation | Short-Mid-term | Global |
Increases or decreases in wind velocity. | Increases or decreases in dispersal distance through wind. | Natural variation | Short term | Local |
Increases or decreases in wind velocity on a local basis | Increased or decreased quality of seed dispersal through wind | Natural variation | Short term | Local |
Alteration of biochemical and chemical reactions. | Biochemical reactions involved in decomposition and fixation processes are temperature dependent and have high temperature sensitivity. Low temperatures cause slow rates of chemical weathering and rely on physical processes. Warmth favours chemical weathering over physical, leading to deeper weathering. | Human action | Long term | Global |
More unstable precipitation patterns and increases in global temperature. | Increases or decreases in water balance at a local and regional scale | Human action | Short term | Global |
Increases or decreases in the amount of rainfall and solar energy available on a regional/local basis. | Increased or decreased water balances within landscapes. | Natural variation | Short term | Regional |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
The sealing of soils by urban construction in urban areas modifies the local climate. | Vegetation no longer regulates climate, leading to even higher temperatures. | Human action | Short term | Urban areas |
Drivers of environmental change:
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Damage protective vegetation. | Poor vegetation cover. Damage protective vegetation. | Human action | Short term | Local |
Climate change driven rising temperatures, changes in rainfall patterns and an increase in extreme weather events threatens fodder crop production. | Models suggest substantial risks to the volume, volatility, and quality of animal feed supply chains despite some gains in productivity. | Human action | Long-term | Global |
Rising temperatures and changing rainfall patterns creates the risk of crop failure, e.g. the 2010 Russian heatwave and the 2012 US Midwest drought. | Decreasing yields of cereals, contributing to higher food prices and a greater demand than supply. | Human action | Long-term | Global |
Damage protective vegetation. Loss of cover due to event induced tree throw. Scalding removes topsoil. | Reduction of erosion control. | Human action or Natural variation | Short-Long term | Global |
Drought displaces or reduces populations of biota. Also reduces thickness of soil water films and inhibits enzymes. | Disturbance of biotic and abiotic factors poses environmental constraints that can temporarily or indefinitely affect decomposition sensitivity. | Human action | Short-Long term | Local-Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
There will be a reduction in plant based fibre material post fire and during recovery period. | Imbalances in the fire cycle caused by extreme weather such as drought can create severe fires which affect provision of fibre and other plant based materials. | Natural variation | Long-term | Global |
Damage protective vegetation. Loss of cover due to event induced tree throw. Scalding removes topsoil. | Reduction of erosion control. | Human action or Natural variation | Short-Long term | Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Loss of cover due to event induced tree throw. Wave action generated by winds. | Damage protective vegetation. | Natural variation | Short term | Global |
Climate change driven rising temperatures, changes in rainfall patterns and an increase in extreme weather events threatens fodder crop production. | Models suggest substantial risks to the volume, volatility, and quality of animal feed supply chains despite some gains in productivity. | Human action | Long-term | Global |
Rising temperatures and changing rainfall patterns creates the risk of crop failure, e.g. the 2010 Russian heatwave and the 2012 US Midwest drought. | Decreasing yields of cereals, contributing to higher food prices and a greater demand than supply. | Human action | Long-term | Global |
Damage of protective vegetation and watersheds. | Saturates ecosystem, reduced water storage capacity. | Human action | Short-Long term | Global |
Wave action generated by wind and intense storms damages plants and cause changes in hydrology. | Loss or damage of vegetation can cause reduction in sediment retention capacity. Storm induced tree throw exposes soil and triggers erosion. | Natural variation | Short term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Earth movements, alteration of slope steepness, slope length and slope morphology. | Increased soil break up and vulnerability to water erosion. The speed of runoff increases on steep slopes, which increases the power of water to break off and carry soil particles. | Natural variation | Short term | Local |
Earth movements, alteration of slope steepness, the speed of runoff increases on steep slopes, which increases the power of water to break off and carry soil particles. | Increase soil break up and vulnerability to water erosion. | Natural variation | Short term | Local |
Increased or decreased water flows through landscapes | Increased or decreased water balances within landscapes | Natural variation | Short term | Local-Regional |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Habitat degradation and loss of plant species, thus reducing the number of plants available to perform phyto-remediation. | Decreased ability of plants to perform phyto-remediation. | Human action | Short term | Local |
Land use change alters sediment supply causing state change in asset | Carbon burial in marine sediments is reduced; carbon emissions increased | Human action | Short term | Coastal ecosystems |
Deforestation reduces tree density and diversity | Evapotranspiration decreases, more ground surface exposed increasing albedo and climate warming | Human action | Medium term | Tropics |
Conversion of wetlands for commercial purposes and resource extraction leads to loss of regional climate regulating function. | Conversion of wetlands causes the average temperature to increase by 0.77?C in all four seasons. | Human action | Medium term | Global |
Forests converted to cultivated land causes removal of above ground biomass. | Increase in carbon emissions. | Human action | Short term | Tropical forests |
Deforestation, reduction in vegetation cover | Decreases stability and resistance of topsoil. No barriers for buffering and attenuation. | Human action | Short-Mid-term | Local |
Deforestation, reduction in vegetation cover | Decreases stability and resistance of top-soil. Reduction of erosion control. | Human action | Short-Mid-term | Local |
Forest edges opened up, exposing humans to new diseases from previously uncontacted pathogens | Service provision weakens as there are no factors present for the regulation of the disease transmission cycle | Human action | Short term | Developing countries |
Deforestation, road construction, agricultural encroachment, dam building, irrigation, coastal zone degradation, wetland modification, mining, and urbanisation | Complex and interlinked response in asset-service system. Interruption of the natural regulation of habitat for disease hosts results in increased exposure of humans to infectious disease | Human action | Short-Long term | Global |
Higher water turbidity (from sediment loading) leads to decreased light availability for photosynthesis. | There has been a loss of canopy-forming algae (up to 70 %) on parts of the Adelaide metropolitan coast since major urbanisation. | Human action | Long term | Coastal ecosystems |
The transition from natural to artificial coastal habitat dramatically changes species diversity while overall species abundance remains the same | Changes in species diversity will alter habitat composition and could introduce unwanted effects for marine algae such as increase in predators or diseases. This will reduce the quantity and quality of quality of algal-based agricultural materials. | Human action | Medium term | Global |
The supply of wood for pulp and wood ash is decreasing as a result of deforestation and unsustainable logging. | Timber plantations expand into natural forests. Models suggest deforestation over degradation in response to market demands resulting in eventual exhaustion of the supply. | Human action | Short term | Global |
There is a strong impact of land use on species composition. For example human land uses and secondary vegetation in an early stage of recovery are poor at retaining the species that characterise pristine (untouched) vegetation. | This loss can impact on fibre production (e.g., cotton) and other wild sourced fibres as land is consumed for other uses. | Human action | Short-Mid-term | Global |
There is a strong impact of land use on species composition. For example human land uses and secondary vegetation in an early stage of recovery are poor at retaining the species that characterise pristine (untouched) vegetation. | This loss can impact on animal material production and as agricultural land is consumed for other uses. | Human action | Short-Mid-term | Global |
Reduction in the habitats available to perform filtration and sequestration. | Decreased ability to perform filtration and sequestration of pollutants at the ecosystem level (e.g. resulting from draining of key habitats such as wetlands, raised and blanket bogs; and from reclamation of marine habitats such as saltmarshes). | Human action | Short term | Local |
Reduction or complete destruction of vegetation cover, modification of hydrological regime. | Damage and loss of protective vegetation reduces flood attenuation capacity. Changes in river flow alter extent, duration and frequency of floodplain inundation. | Human action | Short-Mid-term | Local |
Freshwater diversion from estuarine areas | Habitat loss leads to disruption of connectivity between spawning, nursery and adult stage habitats. | Human action | Short-Mid-term | Local-Regional |
Changes in intensity and extension. | Vegetation alteration can degrade or cause loss of service. | Human action | Short term | Local |
Changes in intensity and extension. | Type of land use determine types of disturbance (tillage, agrochemicals, fertilizers, excrements, etc.) and changes soil properties and water flow rates. | Human action | Short term | Local |
Increase in non-native species | Changes in habitat characteristics facilitate non-native species which can outcompete native species creating more opportunities for pests. | Human action | Long term | Global |
Changes to the way water flows through landscapes | Increased or decreased availability of water at the local and landscape level. | Human action | Short term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Affects health of ecosystems, alters ocean currents and changes biotic communities. | Warming and acidification ocean creates thermal stress (e.g. coral bleaching), sea level rise, sedimentation, Altered ocean currents lead to changes in connectivity and temperature regimes. Ocean acidification leads to a reduction in pH levels and decreases growth rates. | Human action or Natural variation | Short-Long term | Local-Regional-Global |
Coral reef calcification slows due to acidification, affecting the rate of growth. | Loss, degradation or growth reduction of coral reefs and mangroves diminishes storm surge (flood) attenuation capacity, and water storage. | Human action | Mid-Long term | Global |
Rising atmospheric CO2 lowers concentrations of seawater carbonate and reduces calcium carbonate production by corals. | Bleaching and calcification cause mortality and increased coral erosion rates. | Human action | Short-Mid-term | Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Increase in freshwater due to melting of ice caps linked to climate change leads to weakening or collapse of the ocean thermohaline circulation. | Air-sea carbon uptake substantially reduced. | Human action | Long term | Global |
Breakdown in thermohaline circulation caused by rapid glacial melting and influx of freshwater to oceans. | Rapid climate cooling and loss of regional climate regulating function. | Human action | Long-term | Regional seas and smaller regions of ocean |
Affects health of ecosystems, alters ocean currents and changes biotic communities. | Warming and acidification ocean creates thermal stress (e.g. coral bleaching), sea level rise, sedimentation, Altered ocean currents lead to changes in connectivity and temperature regimes. Ocean acidification leads to a reduction in pH levels and decreases growth rates. | Human action or Natural variation | Short-Long term | Local-Regional-Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Surface area of coastal habitats reduced by rising sea level. | Removal of organic component of coastal sediments and their burial. Loss of carbon sink. | Human action | Long term | Coastal ecosystems |
Coastal wetlands and other ecosystems experience large losses. | Loss of coastal habitats and upward and landward movement of flooding risk zones. | Human action | Mid-Long term | Global |
Affects health of ecosystems, alters ocean currents and changes biotic communities. | Warming and acidification ocean creates thermal stress (e.g. coral bleaching), sea level rise, sedimentation, Altered ocean currents lead to changes in connectivity and temperature regimes. Ocean acidification leads to a reduction in pH levels and decreases growth rates. | Human action or Natural variation | Short-Long term | Local-Regional-Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Loss of cover due to event induced tree throw. Wave action generated by winds. | Damage protective vegetation. | Natural variation | Short term | Global |
Detrital material produced by storms caused annual erosion of two species of kelp of between 0.5 and 1.7 kg dry weight per m2. Erosion rate was positively related to water temperature and site exposure. | Increased erosion of kelp blades by storms. Increased storm frequency will lead to removal of the kelp component and reduction in overall standing biomass. | Human action | Long-term | Marine kelp forests in mid-latitude systems |
Increased erosion of kelp blades due to increased storm frequency, linked to global climate change | Greater destruction through mechanical breakup of the kelp component and reduction in overall standing biomass. Detrital material produced by storms caused annual erosion of two species of kelp of between 0.5 and 1.7 kg dry weight per m2 . Erosion positively related to water temperature and site exposure. | Human action | Long-term | Marine kelp forests in mid-latitude systems |
Loss of cover due to event induced tree throw. Damage of protective vegetation. | Reduction of storm attenuation capacity. | Human action | Short-Long term | Global |
Affects health of ecosystems, leads to altered ocean current and water runoff changes. | Changes in storm patterns leads to destruction of structures. Changes in precipitation create increases in runoff of freshwater, and land based pollutants. | Human action or Natural variation | Short-Long term | Local-Regional-Global |
Wave action generated by wind and intense storms damages plants and cause changes in hydrology. | Loss or damage of vegetation can cause reduction in sediment retention capacity. Storm induced tree throw exposes soil and triggers erosion. | Natural variation | Short term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Rainfall intensity | Risk as heavy raindrops on bare soil causes soil surface to seal increasing erodibility. Increased soil break up and vulnerability to water erosion. | Natural variation | Short term | Local |
Rainfall intensity | Risk as heavy raindrops on bare soil causes soil surface to seal increasing erodibility. | Natural variation | Short term | Local |
Species (of pathogens or their hosts) range shifts due to change in climate conditions | Usual predator-prey relationships change and harmful species can spread into areas where they are not predated on | Human action | Long term | Global |
Permafrost (frozen soil layer) melting due to higher average annual temperatures | Methane gas bubbles trapped in soil released as it melts, increasing emissions to the atmosphere, exacerbating the warming effect in the short term and causing a positive feedback in the long term as warming continues to melt permafrost releasing more methane. | Human action | Long term | High latitudes |
Climatic anomalies (e.g. ENSO) create deficits and excesses in temperature and precipitation. | Regulation of regional climate is heavily impacted, e.g. an El Niño is associated with warm and very wet weather months in April–October causing major flooding in southern hemisphere countries such as Peru and Ecuador. | Natural variation | Long-term | Regional |
Climate change driven rising temperatures, changes in rainfall patterns and an increase in extreme weather events threatens fodder crop production. | Models suggest substantial risks to the volume, volatility, and quality of animal feed supply chains despite some gains in productivity. | Human action | Long-term | Global |
Rising temperatures and changing rainfall patterns creates the risk of crop failure, e.g. the 2010 Russian heatwave and the 2012 US Midwest drought. | Decreasing yields of cereals, contributing to higher food prices and a greater demand than supply. | Human action | Long-term | Global |
Climate anomalies cause changes to the photosynthetic cycle and global greening patterns. | There is a quantitative link between climate anomalies such as the El Nino Southern Oscillation and weather events. There is evidence of reduced vegetation greenness during ENSO events in sub-tropical parts of the southern hemisphere impacting fibre provision. | Natural variation | Medium term | Semi-arid vegetation in the southern hemisphere |
Increased or decreased functioning of habitats within ecosystems | Increased or decreased ability of habitats to perform filtration, sequestration, storage, and/or accumulation of pollutants within ecosystems. | Natural variation | Short term | Regional-Global |
Damage of protective vegetation and watersheds. | Reduction of flood attenuation capacity. | Human action | Short-Long term | Global |
Alters conditions: temperature, humidity, rainfall. | Climatic conditions affect air pollution levels and absorption by vegetation. Climate changes may alter vegetation. Droughts may cause disruption of water for sound attenuation. | Human action or Natural variation | Short-Mid-term | Global |
Alteration of biochemical and chemical reactions. | Biochemical and chemical reactions involved in decomposition and fixation processes are temperature dependent and have high temperature sensitivity. | Human action | Short-Long term | Global |
More unstable precipitation patterns and increases in global temperature. | Increases or decreases in water balance at a local and regional scale | Human action | Short term | Global |
Increases or decreases in the amount of rainfall and solar energy available on a regional/local basis. | Increased or decreased water balances within landscapes. | Natural variation | Short term | Regional |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Strong wave action by boats | Coastal systems such as mangrove forests could be damaged. | Human action | Short term | Local |
Land use change alters sediment supply causing state change in asset | Carbon burial in marine sediments is reduced; carbon emissions increased | Human action | Short term | Coastal ecosystems |
Industrial activities and construction cause land use change and exposes upper soil layer resulting in loss of soil organic carbon. | Soil drainage increases aeration. Soil microorganism respiration rates therefore increase. Soil no longer accumulates soil organic carbon but becomes CO2 source. | Human action | Short term | Global |
Coastal systems such as mangrove forests could be damaged. | Reduction of storm attenuation capacity. | Human action | Short term | Local |
Water quality, depth, turbidity, salinity and nutrient changes will lead to changes in plant community structure and health, and decreases or disappearance of biotic communities and habitat health and complexity. | Habitat loss leads to disruption of connectivity between spawning, nursery and adult stage habitats. Displacement or local extinction of adult populations, disrupting spawning patterns. Sedimentation due to shipping activity reduces light penetration, settlement success, survival, and diversity of habitats such as coral. | Human action | Short term | Local |
Strong wave action by boats. Loss of sand through mining, development and coastal structures. Disturbance of vegetation. | Damage of coastal ecosystems such as mangrove forests and loss of dunes and natural beaches results in reduction of sediment retention and erosion control. | Human action | Short term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
The sealing of soils by urban construction in urban areas modifies the local climate. | Vegetation no longer regulates climate, leading to even higher temperatures. | Human action | Short term | Urban areas |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Habitat degradation and reduction or interruption of algal species’ ability to perform bio-remediation. | Decreased bio-remediation due to decreased ability of algae to perform bio-remediation. | Human action | Short term | Local |
Excess nutrient loads and sunlight cause imbalances in micro algae concentrations. Harmful toxins produced by the bloom kill beneficial cyanobacteria. | Any services arising from the algae will be diminished or stopped. | Human action | Short term | Global |
Reduction in the ability of habitats to filter or capture pollutants. | Decreased filtration, adsorption, or accumulation of pollutants at the ecosystem level. | Human action | Short term | Local |
Habitat loss due to overfertilization and toxics contamination | Habitat loss due to clouding of coastal waters by sediment from run-off and toxics which leads to contamination. | Human action | Short-Mid-term | Local-Regional |
Alters conditions: temperature, humidity, rainfall | Pollution may alter presence and conditions of urban and suburban vegetation, may diminish plants’ capacity of gas absorption. | Human action | Short-Mid-term | Global |
Microbiota are sensitive to metal pollution. Toxicity of heavy metals displaces exchangeable nutrients from binding sites. | Pollution inhibits litter decomposition. Decomposition is sensitive to pollution and metals contaminants at the microbial level. Metal pollution also makes plant matter difficult to decompose. May lead to algal blooms. | Human action | Short-Long term | Local-Global |
Suppressed rainfall in highly polluted areas due to reduced efficiency of clouds at releasing precipitation. | Decreased water balance and disrupted hydrological cycle in polluted areas | Human action | Short term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Caused an annual 1% decline in phytoplankton in worlds’ oceans. | Less carbon absorbed by phytoplankton for photosynthesis. | Human action | Short term | Global |
Cyclic and fatally bleached sponge tissues had lower chlorophyll a concentrations than non-bleached tissues. | Sponge pieces incubated at 30°C in a lab show mortality after less than 15 hours with impacts on medicinal compound provision. | Human action | Medium term | Warm water coral reef ecosystems |
Drivers of environmental change:
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Loss of cover due to event induced tree throw. Wave action generated by winds. | Damage protective vegetation. | Natural variation | Short term | Global |
Wave action generated by wind and intense storms damages plants and cause changes in hydrology. | Loss or damage of vegetation can cause reduction in sediment retention capacity. Storm induced tree throw exposes soil and triggers erosion. | Natural variation | Short term | Local |
Alters biological soil community, structural properties of parent material by exposure to water. | Changes soil’s environment and modifies processes. | Human action | Long term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Displaces or reduces population of biota. Also reduces thickness of soil water films and inhibits enzymes. | Disturbance of biotic and abiotic factors pose environmental constraints that can temporarily or indefinitely affect decomposition sensitivity. Changes soil’s environment, modifying processes. | Human action | Long term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Earth movements, alteration of slope steepness, slope length and slope morphology. | Increased soil break up and vulnerability to water erosion. The speed of runoff increases on steep slopes, which increases the power of water to break off and carry soil particles. | Natural variation | Short term | Local |
Earth movements, alteration of slope steepness, the speed of runoff increases on steep slopes, which increases the power of water to break off and carry soil particles. | Increase soil break up and vulnerability to water erosion. | Natural variation | Short term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Diversion of drainage furrows, waterways, dam by washes, etc. | Run-off concentration. Increase soil break up and vulnerability to erosion leading to loss of service. | Human action | Short-Mid-term | Local |
Increase slope length and/or steepness | Slope increase causes increase in speed, power and depth of the runoff carrying more soil with it. Influence nature of the soil making it more susceptible to erosion. | Human action | Short-Mid-term | Local |
Deforestation, loss of biological community. | Alters biological, mechanical and chemical weathering processes. Type of land use determines type of disturbance (tillage, agrochemicals, fertilizers, excrements, etc.) changes soil properties. | Human action | Long term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Strong wave action by boats | Coastal systems such as mangrove forests could be damaged. | Human action | Short term | Local |
Strong wave action by boats. Loss of sand through mining, development and coastal structures. Disturbance of vegetation. | Damage of coastal ecosystems such as mangrove forests and loss of dunes and natural beaches results in reduction of sediment retention and erosion control. | Human action | Short term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Displaces or reduces population of biota. Also reduces thickness of soil water films and inhibits enzymes. | Disturbance of biotic and abiotic factors pose environmental constraints that can temporarily or indefinitely affect decomposition sensitivity. Changes soil’s environment, modifying processes. | Human action | Long term | Local |
Drivers of environmental change:
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Deforestation, loss of biological community. | Alters biological, mechanical and chemical weathering processes. Type of land use determines type of disturbance (tillage, agrochemicals, fertilizers, excrements, etc.) changes soil properties. | Human action | Long term | Local |
Alters water flow and availability, and rock structure and topographic characteristics which alter soil composition. | Changing decomposition and fixation processes | Human action | Short term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Displaces or reduces population of biota. Also reduces thickness of soil water films and inhibits enzymes. | Disturbance of biotic and abiotic factors pose environmental constraints that can temporarily or indefinitely affect decomposition sensitivity. Changes soil’s environment, modifying processes. | Human action | Long term | Local |
Drivers of environmental change:
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Displaces or reduces population of biota. Also reduces thickness of soil water films and inhibits enzymes. | Disturbance of biotic and abiotic factors pose environmental constraints that can temporarily or indefinitely affect decomposition sensitivity. Changes soil’s environment, modifying processes. | Human action | Long term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Damage protective vegetation. | Poor vegetation cover. Damage protective vegetation. | Human action | Short term | Local |
Damage protective vegetation. Loss of cover due to event induced tree throw. Scalding removes topsoil. | Reduction of erosion control. | Human action or Natural variation | Short-Long term | Global |
Drought displaces or reduces populations of biota. Also reduces thickness of soil water films and inhibits enzymes. | Disturbance of biotic and abiotic factors poses environmental constraints that can temporarily or indefinitely affect decomposition sensitivity. | Human action | Short-Long term | Local-Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Damage protective vegetation. Loss of cover due to event induced tree throw. Scalding removes topsoil. | Reduction of erosion control. | Human action or Natural variation | Short-Long term | Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Loss of cover due to event induced tree throw. Wave action generated by winds. | Damage protective vegetation. | Natural variation | Short term | Global |
Wave action generated by wind and intense storms damages plants and cause changes in hydrology. | Loss or damage of vegetation can cause reduction in sediment retention capacity. Storm induced tree throw exposes soil and triggers erosion. | Natural variation | Short term | Local |
Alters biological soil community, structural properties of parent material by exposure to water. | Changes soil’s environment and modifies processes. | Human action | Long term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Earth movements, alteration of slope steepness, slope length and slope morphology. | Increased soil break up and vulnerability to water erosion. The speed of runoff increases on steep slopes, which increases the power of water to break off and carry soil particles. | Natural variation | Short term | Local |
Earth movements, alteration of slope steepness, the speed of runoff increases on steep slopes, which increases the power of water to break off and carry soil particles. | Increase soil break up and vulnerability to water erosion. | Natural variation | Short term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Land use change alters sediment supply causing state change in asset | Carbon burial in marine sediments is reduced; carbon emissions increased | Human action | Short term | Coastal ecosystems |
Wetland drainage and peat harvesting causes land use change and exposes upper soil layer resulting in loss of soil organic carbon. | Wetland drainage increases soil aeration. Soil microorganism respiration rates therefore increase. Wetlands no longer accumulate soil organic carbon but become CO2 sources. | Human action | Short term | Global |
Diversion of drainage furrows, waterways, dam by washes, etc. | Run-off concentration. Increase soil break up and vulnerability to erosion leading to loss of service. | Human action | Short-Mid-term | Local |
Diversion of drainage furrows, waterways, dam by washes, etc. | Run-off concentration. Increased soil break up and vulnerability to water erosion. | Human action | Short-Mid-term | Local |
Alters water flow, rock structure, topographic characteristics which alter soil composition | Changing decomposition and fixation processes. | Human action | Long term | Local |
Alters water flow and availability, and rock structure and topographic characteristics which alter soil composition. | Changing decomposition and fixation processes | Human action | Short term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Strong wave action by boats | Coastal systems such as mangrove forests could be damaged. | Human action | Short term | Local |
Land use change alters sediment supply causing state change in asset | Carbon burial in marine sediments is reduced; carbon emissions increased | Human action | Short term | Coastal ecosystems |
Industrial activities and construction cause land use change and exposes upper soil layer resulting in loss of soil organic carbon. | Soil drainage increases aeration. Soil microorganism respiration rates therefore increase. Soil no longer accumulates soil organic carbon but becomes CO2 source. | Human action | Short term | Global |
Strong wave action by boats. Loss of sand through mining, development and coastal structures. Disturbance of vegetation. | Damage of coastal ecosystems such as mangrove forests and loss of dunes and natural beaches results in reduction of sediment retention and erosion control. | Human action | Short term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Changes soil properties | Changes soil water retention properties thus increases susceptibility to water or wind erosion. | Human action | Short-Mid-term | Local |
Addition of organic or inorganic matter results in changes in diversity in the soil and the microbial composition. | Alters matter composition and microbial community structure which in turn affects decomposition rate. | Human action | Short-Long term | Local-Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Timber and wood harvesting leads to a reduction in standing timber biomass and exposes upper soil layer. | Soil organic carbon declines rapidly under cultivation, e.g. woodland conversion results in soil degradation, erosion and loss of organic matter, diminishing the soil potential to sequester carbon. | Human action | Long term | Global |
Stump and root harvesting as a source of woody biomass for bioenergy generation leads to soil disturbance. | Stump harvesting causes existing soil organic carbon to become mineralised, leading to carbon loss as carbon dioxide, e.g. 1 tonne carbon per hectare per year might be lost compared with sites undisturbed by stump harvesting operations. | Human action | Short term | Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Microbiota are sensitive to metal pollution. Toxicity of heavy metals displaces exchangeable nutrients from binding sites. | Acid rain and pollution, acidity in air, etc. alters weathering agents in the environment (water, soil, air). | Human action | Long term | Local-Global |
Microbiota are sensitive to metal pollution. Toxicity of heavy metals displaces exchangeable nutrients from binding sites. | Pollution inhibits litter decomposition. Decomposition is sensitive to pollution and metals contaminants at the microbial level. Metal pollution also makes plant matter difficult to decompose. May lead to algal blooms. | Human action | Short-Long term | Local-Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Caused an annual 1% decline in phytoplankton in worlds’ oceans. | Less carbon absorbed by phytoplankton for photosynthesis. | Human action | Short term | Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Loss of cover due to event induced tree throw. Wave action generated by winds. | Damage protective vegetation. | Natural variation | Short term | Global |
Wave action generated by wind and intense storms damages plants and cause changes in hydrology. | Loss or damage of vegetation can cause reduction in sediment retention capacity. Storm induced tree throw exposes soil and triggers erosion. | Natural variation | Short term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Rainfall intensity | Risk as heavy raindrops on bare soil causes soil surface to seal increasing erodibility. Increased soil break up and vulnerability to water erosion. | Natural variation | Short term | Local |
Rainfall intensity | Risk as heavy raindrops on bare soil causes soil surface to seal increasing erodibility. | Natural variation | Short term | Local |
Precipitation increase associated with higher soil organic carbon content. Temperature is negatively associated | Variation in weather conditions impacts the amount of soil organic carbon stored in upper soil layers. | Natural variation | Short term | Global |
Alteration of biochemical and chemical reactions. | Biochemical reactions involved in decomposition and fixation processes are temperature dependent and have high temperature sensitivity. Low temperatures cause slow rates of chemical weathering and rely on physical processes. Warmth favours chemical weathering over physical, leading to deeper weathering. | Human action | Long term | Global |
Alteration of biochemical and chemical reactions. | Biochemical and chemical reactions involved in decomposition and fixation processes are temperature dependent and have high temperature sensitivity. | Human action | Short-Long term | Global |
Drivers of environmental change:
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Draught animals are rarely kept in herds, often kept apart from other animals, and are often in remote areas but may travel considerable distances and congregate in local markets. When an animal dies in the middle of a cultivation season it is difficult to borrow or hire another, because animal power is in demand. Ultimately reduced work output can be reflected in reduced farm productivity. | Service provision will decline in infected animals, e.g. cost of working oxen affected by bovine dermatophilosis in Zambia was USD 193 per affected ox. | Natural variation | Short term | Global |
Contamination of manure. Degree of risk influenced by animal species, dietary sources, health status and age of the animals, physical and chemical characteristics of the manure as well as the storage facilities of the manure | Service quality degraded due to contaminated manure creating a health risk to livestock and humans | Natural variation | Short term | Global |
Mortality or severe weakening of the animal | Service provision impacted by the reduction in livestock, e.g. in 1997, foot and mouth disease caused the destruction of 8 million pigs in Taiwan, costing the economy more than $25 billion. | Natural variation | Short term | Global |
Pathogens spread in favourable climatic conditions, e.g. high humidity and rainfall. | Yield significantly decreased and/or quality of yield compromised due to damage to cereal grain. | Natural variation | Short term | Global |
A vast number of naturally-occurring fungal, bacterial, and viral pathogens, and pests affect pollinator species. Reduction in pollinator species’ survival. | Decreased pollination services | Natural variation | Short-Mid-term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Habitat degradation and loss of plant species, thus reducing the number of plants available to perform phyto-remediation. | Decreased ability of plants to perform phyto-remediation. | Human action | Short term | Local |
Alters freshwater supply and resources. | Changed habitat dynamics, reduction in stability of blue carbon habitats. | Human action | Short term | Coastal ecosystems |
Forests converted to cultivated land causes removal of above ground biomass. | Increase in carbon emissions. | Human action | Short term | Tropical forests |
Policies on human population movements lead to increase in contact between humans and disease hosts | Transmission capacity of disease vectors unregulated by natural habitat and competition therefore disease transmission increased to humans | Human action | Short term | Global |
The transition from natural to artificial coastal habitat dramatically changes species diversity while overall species abundance remains the same | Changes in species diversity will alter habitat composition and could introduce unwanted effects for marine algae such as increase in predators or diseases | Human action | Medium term | Global |
The transition from natural to artificial coastal habitat dramatically changes species diversity while overall species abundance remains the same | Changes in species diversity will alter habitat composition and could introduce unwanted effects for marine algae such as increase in predators or diseases. This will reduce the quantity and quality of quality of algal-based agricultural materials. | Human action | Medium term | Global |
The supply of wood for pulp and wood ash is decreasing as a result of deforestation and unsustainable logging. | Timber plantations expand into natural forests. Models suggest deforestation over degradation in response to market demands resulting in eventual exhaustion of the supply. | Human action | Short term | Global |
There is a strong impact of land use on species composition. For example human land uses and secondary vegetation in an early stage of recovery are poor at retaining the species that characterise pristine (untouched) vegetation. | This loss can impact on fibre production (e.g., cotton) and other wild sourced fibres as land is consumed for other uses. | Human action | Short-Mid-term | Global |
There is a strong impact of land use on species composition. For example human land uses and secondary vegetation in an early stage of recovery are poor at retaining the species that characterise pristine (untouched) vegetation. | This loss can impact on animal material production and as agricultural land is consumed for other uses. | Human action | Short-Mid-term | Global |
Reduction in the number of plants available to perform filtration and sequestration. | Decreased filtration and sequestration of pollutants by plants. | Human action | Short term | Local |
Freshwater diversion from estuarine areas | Habitat loss leads to disruption of connectivity between spawning, nursery and adult stage habitats. | Human action | Short-Mid-term | Local-Regional |
Lower species mobility, thus decreased ability to disperse seeds. Altered wind and hydrological processes within a given area will affect how far seeds are dispersed. | Decreased seed dispersal by animals | Human action | Short-Mid-term | Global |
Declines in pollinator populations due to reduced access to food and nesting resources (16.5 % of vertebrate pollinator species are threatened with global extinction; in Europe, 9% of bee and butterfly species are threatened, and populations of 37% of bees and 31% of butterflies are declining) | Decreased pollination services during the peak period of pollination (i.e. spring for most crops in temperate zones). 5-8 % of global crop production would be lost if pollination services ceased. | Human action | Short term | Regional |
Changes in intensity and extension. | Vegetation alteration can degrade or cause loss of service. | Human action | Short term | Local |
Changes in intensity and extension. | Type of land use determine types of disturbance (tillage, agrochemicals, fertilizers, excrements, etc.) and changes soil properties and water flow rates. | Human action | Short term | Local |
Increase in non-native species | Changes in habitat characteristics facilitate non-native species which can outcompete native species creating more opportunities for pests. | Human action | Long term | Global |
Deforestation, loss of biological community. | Alters biological, mechanical and chemical weathering processes. Type of land use determines type of disturbance (tillage, agrochemicals, fertilizers, excrements, etc.) changes soil properties. | Human action | Long term | Local |
Terrestrial vegetation lost and transpiration decreases. | Cooling and ventilation effect is lost and regional climate permanently altered. | Human action | Long term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Spills of cultured algae (from aquaculture farms) into natural ecosystems introduces genetic mutations and destroys native algal species in aquatic systems. | The service will be compromised in the long term by introduction of genetic uniformity and mutations. | Human action | Long-term | Aquatic environments |
Breeding programmes focused on a subset of crops/genetic material reduces overall diversity of plant genetic material. | Genetic uniformity causes defective genetic material and poorer quality of plant, animal or algal resources. | Human action | Long term | Global |
The consumption of GM foods containing antibiotic resistance can facilitate gene transfer to microbes in the gut and to pathogens in the environment. | Evolution of resistance to animal and human antibiotics over time. | Human action | Long term | Global |
Reduction in pollinator species’ survival. Genetically modified herbicide tolerant crops are associated with a reduction in the number of surrounding weeds beneficial for pollinators, resulting in loss of pollinator habitat. | Decreased pollination services. | Human action | Short term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Resistance to biological control measures | Loss of efficiency of biological control agents against plant pathogens, e.g. fungicide resistance in fungal plant pathogens. | Natural variation | Long term | Global |
Higher water turbidity (from sediment loading) leads to decreased light availability for photosynthesis. | There has been a loss of canopy-forming algae (up to 70 %) on parts of the Adelaide metropolitan coast since major urbanisation. | Human action | Long term | Coastal ecosystems |
Lower and poorer quality yields of commercial plant species as soils become exhausted of organic and mineral content. | The provision of vegetable fibres is diminished | Human action | Medium term | Local |
Overfertilization and nutrient enrichment lead to algal overgrowth and loss in cover and diversity of habitats. | Habitat loss leads to disruption of connectivity between spawning, nursery and adult stage habitats. | Human action | Short-Mid-term | Local-Regional |
Eradication of predator populations by use of insecticides, different crop rotation practices or removal by other means, e.g. hunting | Explosion in pest (prey) populations due to predator absence | Human action | Short term | Global |
Management of pollinators for commercial purposes, mass breeding, and trade have exacerbated the impacts of pathogens and pests on pollinator species. Further reductions in species survival. | Decreased pollination services | Human action | Short term | Local |
Intensive agriculture (i.e. large homogenous fields with regular and intensive tillage, grazing, and/or mowing) and associated chemical use (e.g. pesticides such as neonicotinoids) has abroad range of lethal and sub-lethal effects on pollinator species. Pollinator habitat loss and disruption of daily activities. Higher rates of species mortality and reduced species survival. More specialised pollinator species (i.e. those that are highly dependent on a specific feature and are not adaptable) are more heavily affected by this impact. | Decreased pollination services. The magnitude of loss of pollination will depend on the presence of other more robust and adaptable species. | Human action | Short term | Local-Global |
Addition of organic or inorganic matter results in changes in diversity in the soil and the microbial composition. | Alters matter composition and microbial community structure which in turn affects decomposition rate. | Human action | Short-Long term | Local-Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Affects health of ecosystems, alters ocean currents and changes biotic communities. | Warming and acidification ocean creates thermal stress (e.g. coral bleaching), sea level rise, sedimentation, Altered ocean currents lead to changes in connectivity and temperature regimes. Ocean acidification leads to a reduction in pH levels and decreases growth rates. | Human action or Natural variation | Short-Long term | Local-Regional-Global |
Decreased ability of species to uptake nutrients. | Decreased chemical quality of salt water. | Human action | Short term | Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Caused an annual 1% decline in phytoplankton in worlds’ oceans. | Less carbon absorbed by phytoplankton for photosynthesis. | Human action | Short term | Global |
Cyclic and fatally bleached sponge tissues had lower chlorophyll a concentrations than non-bleached tissues. | Sponge pieces incubated at 30°C in a lab show mortality after less than 15 hours with impacts on medicinal compound provision. | Human action | Medium term | Warm water coral reef ecosystems |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Change in service demand based on climate change impacts on water availability. | The adaptability of the animals to climatic changes will determine the availability of the provision of the service. Animals which adapt faster to climate extremes, e.g. to aridity will maintain provision of the service. are most suited to particular areas. Already drought resistant animals (notably donkeys) are becoming increasingly appreciated in the drought affected areas of southern, eastern and western Africa. Over time though, animals adapt to grazing and consuming different types of grasses and plant species dependent upon on location, climate and availability. | Human action | Long term | Global |
Climate change driven rising temperatures, changes in rainfall patterns and an increase in extreme weather events threatens fodder crop production. | Models suggest substantial risks to the volume, volatility, and quality of animal feed supply chains despite some gains in productivity. | Human action | Long-term | Global |
Rising temperatures and changing rainfall patterns creates the risk of crop failure, e.g. the 2010 Russian heatwave and the 2012 US Midwest drought. | Decreasing yields of cereals, contributing to higher food prices and a greater demand than supply. | Human action | Long-term | Global |
Decrease in the amount of water available to disperse seeds | Decreased seed dispersal by water bodies | Natural variation | Short term | Local |
Drought displaces or reduces populations of biota. Also reduces thickness of soil water films and inhibits enzymes. | Disturbance of biotic and abiotic factors poses environmental constraints that can temporarily or indefinitely affect decomposition sensitivity. | Human action | Short-Long term | Local-Global |
Increases in nutrients and changes in chemical composition of freshwater bodies. Physical alterations of turbidity and water flow. | Increased nutrients and/or chemicals can upset chemical condition of freshwater. | Human action | Short term | Regional |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Displaces or reduces population of biota. Also reduces thickness of soil water films and inhibits enzymes. | Disturbance of biotic and abiotic factors pose environmental constraints that can temporarily or indefinitely affect decomposition sensitivity. Changes soil’s environment, modifying processes. | Human action | Long term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Climate change driven rising temperatures, changes in rainfall patterns and an increase in extreme weather events threatens fodder crop production. | Models suggest substantial risks to the volume, volatility, and quality of animal feed supply chains despite some gains in productivity. | Human action | Long-term | Global |
Rising temperatures and changing rainfall patterns creates the risk of crop failure, e.g. the 2010 Russian heatwave and the 2012 US Midwest drought. | Decreasing yields of cereals, contributing to higher food prices and a greater demand than supply. | Human action | Long-term | Global |
Decreases in the number of plants along a water course. Physical alteration of water bodies. | Reduced number of seed dispersing plants. Changes to the distance and direction of seed dispersal through water bodies, resulting in decreased seed dispersal in the case of long term flooding, or increased seed dispersal in the case of short term flooding. | Natural variation | Short term | Local |
Alters biological soil community, structural properties of parent material by exposure to water. | Changes soil’s environment and modifies processes. | Human action | Long term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Increased populations of sea urchins lead to overgrazing of kelp | Decreased bio-remediation by kelp | Human action | Mid-Long term | Global |
Species, e.g. sea urchins, which predate or act as pests for the kelp components increase in numbers. | The service provision does not stop but slows down due to reduction in quality and quantity of the asset. | Natural variation | Long term | Global |
Burrs (seeds that have hooks or teeth) from burr-bearing plants, in wool contaminate fleeces, requiring more complex and expensive removal operations. Leather is also at risk from blowflies. | Service slowed down and more costly at the fleece or leather processing stage. | Natural variation | Short term | Global |
Displacement or local extinction of biotic communities. | Alien species altering ecology of system, e.g. displacing relevant species to maintain services. | Human action | Short-Mid-term | Local |
Invasive species can deviate pollinators from the plants they normally pollinate (in the case of invasive plants) or can outcompete native pollinators (in the case of invasive pollinators) | Decreased pollination services from native pollinators to native plants. | Human action | Short term | Local |
Reduced species survival and reduced ability of native species to disperse seeds. Reduced ability of water bodies to effectively disperse seeds. | Decreased seed dispersal by native species, and possibly less efficient seed dispersal where invasive species replace native species. Reduced water mobility due to invasive plants, leading to reduction in seed dispersal distance by water bodies. | Human action | Short term | Local |
Alteration of chemical properties of salt water bodies. | Decreased chemical quality of salt water. | Human action | Short term | Local |
Altered chemical balances of freshwater bodies and competition with native species | Decreased chemical condition of freshwaters resulting from lower species diversity, loss of native species, and changes in nutrient and chemical balances. | Human action | Short term | Local-Regional |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Marine resources (fishmeal and fish oil in the use of aqua feeds) potentially exhausted by over use and under supply | Poorly nourished fish in aquaculture farms. | Human action | Long-term | Global |
Physical destruction and alteration of the habitat. | Habitat loss leads to disruption of connectivity between spawning, nursery and adult stage habitats. Dynamite destroys and kills habitats/organisms. Hydraulic dredging damages fauna and kills animals by heat. Seabed trawling creates turbidity, which kills larvae, eliminates coral and destroys nurseries. | Human action | Short-Mid-term | Local-Regional |
Reduction in the population numbers of seed dispersing species. | Decreased seed dispersal by animals. | Human action | Short term | Local-Regional |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Timber and wood harvesting leads to a reduction in standing timber biomass and exposes upper soil layer. | Soil organic carbon declines rapidly under cultivation, e.g. woodland conversion results in soil degradation, erosion and loss of organic matter, diminishing the soil potential to sequester carbon. | Human action | Long term | Global |
Stump and root harvesting as a source of woody biomass for bioenergy generation leads to soil disturbance. | Stump harvesting causes existing soil organic carbon to become mineralised, leading to carbon loss as carbon dioxide, e.g. 1 tonne carbon per hectare per year might be lost compared with sites undisturbed by stump harvesting operations. | Human action | Short term | Global |
Illegal overexploitation causes population declines in wild animal species, e.g. 95% of respondents to a survey in Madagascar have eaten at least one protected forest animal species (and nearly 45% have eaten more than 10). Legal overexploitationbelow causes population declines in wild animal species but regulated trade cause less extreme changes in wild species populations. | Reduced species abundance and diversity | Human action | Short term | Global |
General unsustainable use for many reasons. Including illegal trade in plant materials / fibre (high value timber for example) | The provision of vegetable fibres is diminished | Human action | Short term | Local |
Reduced species survival and population declines due to lower food availability | Decreased seed dispersal by animals | Human action | Short term | Local-Regional |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Eradication of predator populations by use of insecticides, different crop rotation practices or removal by other means, e.g. hunting | Explosion in pest (prey) populations due to predator absence | Human action | Short term | Global |
Reduction in the population numbers of seed dispersing species. | Decreased seed dispersal by animals. | Human action | Short term | Local-Regional |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Species, e.g. sea urchins, which predate or act as pests for the kelp components increase in | The service provision does not stop but slows down due to reduction in quality and quantity of the asset. | Natural variation | Long term | Global |
Cellulose is consumed by the larvae of beetles causing serious damage to structural or standing timbers. | Increase in pests (wood-boring beetle) associated with high moisture levels and elevated temperatures causes a decrease in cellulose in softwood timber from temperate environments. | Natural variation | Short term | Local |
A vast number of naturally-occurring fungal, bacterial, and viral pathogens, and pests affect pollinator species. Reduction in pollinator species’ survival. | Decreased pollination services | Natural variation | Short-Mid-term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Habitat degradation and reduction or interruption of algal species’ ability to perform bio-remediation. | Decreased bio-remediation due to decreased ability of algae to perform bio-remediation. | Human action | Short term | Local |
Excess nutrient loads and sunlight cause imbalances in micro algae concentrations. Harmful toxins produced by the bloom kill beneficial cyanobacteria. | Any services arising from the algae will be diminished or stopped. | Human action | Short term | Global |
Reduction or interruption in the ability of micro-organisms to filter, sequester, store or accumulate pollutants. | Decreased filtration, adsorption, or accumulation of pollutants by micro-organisms. | Human action | Mid-Long term | Local |
Lower species survival (or local extinctions) and reduction or interruption of their ability to perform filtration, sequestration, storage, and accumulation of pollutants. | Decreased filtration, sequestration, storage, and accumulation of pollutants by animals. | Human action | Mid-Long term | Local |
Reduction of algae’s capacity to filter or capture pollutants | Decrease capture or filtration of pollutants by algae. | Human action | Mid-Long term | Local |
Plant death and a resulting reduction in their ability to perform filtration and sequestration | Decreased filtration and sequestration of pollutants by plants. | Human action | Short term | Local |
Habitat loss due to overfertilization and toxics contamination | Habitat loss due to clouding of coastal waters by sediment from run-off and toxics which leads to contamination. | Human action | Short-Mid-term | Local-Regional |
Alters conditions: temperature, humidity, rainfall | Pollution may alter presence and conditions of urban and suburban vegetation, may diminish plants’ capacity of gas absorption. | Human action | Short-Mid-term | Global |
Altered wind dynamics and the ability of wind to disperse seeds | Decreased dispersal distance of seeds by wind | Human action | Short term | Local |
Microbiota are sensitive to metal pollution. Toxicity of heavy metals displaces exchangeable nutrients from binding sites. | Acid rain and pollution, acidity in air, etc. alters weathering agents in the environment (water, soil, air). | Human action | Long term | Local-Global |
Microbiota are sensitive to metal pollution. Toxicity of heavy metals displaces exchangeable nutrients from binding sites. | Pollution inhibits litter decomposition. Decomposition is sensitive to pollution and metals contaminants at the microbial level. Metal pollution also makes plant matter difficult to decompose. May lead to algal blooms. | Human action | Short-Long term | Local-Global |
Alteration of chemical composition of salt water bodies and decreased pH of salt water. | Decreased quality of salt water. | Human action | Short term | Global |
Alteration of nutrient cycles (e.g. leading to algal blooms and eutrophication), pH level, and changes to chemical composition of salt waters. Algal blooms smother sea grass. Eutrophication leads to creation of “dead zones” in the ocean, which are areas that are entirely deprived of oxygen. | Decreased chemical quality of salt water. | Human action | Short term | Local |
Increases in nutrients, sediments and changes in chemical composition of freshwater bodies, decreased species survival. | Decreased chemical condition of freshwaters. | Human action | Short term | Regional |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Resistance to biological control measures | Loss of efficiency of biological control agents against plant pathogens, e.g. fungicide resistance in fungal plant pathogens. | Natural variation | Long term | Global |
Species, e.g. sea urchins, which predate or act as pests for the kelp components increase in | The service provision does not stop but slows down due to reduction in quality and quantity of the asset. | Natural variation | Long term | Global |
Control of predator populations | Food availability through a finite source of prey limits nutritional resource for predators and declines in prey will constrain predator population size too. | Natural variation | Short-Mid-term | Global |
Human-induced climate change is affecting pollinator species, mainly butterflies. Alterations in species richness and distributions. | Decreased pollination services where species are declining or moving away from areas and increased pollination in areas where species are moving to. | Human action | Short term | Local-Regional |
Increases or decreases in local species richness, resulting in increased or decreased seed dispersal | Decreased seed dispersal by native species. Specialist plants (i.e. that rely on one particular species for dispersal) will be more severely affected. | Human action | Short term | Local-Regional |
Extinction risk factors including habitat loss and microbial invasions lead to reduction in microbial populations and diversity. | Diminishes the ability of the microorganisms to consume VOCs and ventilate indoor air. | Human action | Short-Long term | Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Detrital material produced by storms caused annual erosion of two species of kelp of between 0.5 and 1.7 kg dry weight per m2. Erosion rate was positively related to water temperature and site exposure. | Increased erosion of kelp blades by storms. Increased storm frequency will lead to removal of the kelp component and reduction in overall standing biomass. | Human action | Long-term | Marine kelp forests in mid-latitude systems |
Increased erosion of kelp blades due to increased storm frequency, linked to global climate change | Greater destruction through mechanical breakup of the kelp component and reduction in overall standing biomass. Detrital material produced by storms caused annual erosion of two species of kelp of between 0.5 and 1.7 kg dry weight per m2 . Erosion positively related to water temperature and site exposure. | Human action | Long-term | Marine kelp forests in mid-latitude systems |
Affects health of ecosystems, leads to altered ocean current and water runoff changes. | Changes in storm patterns leads to destruction of structures. Changes in precipitation create increases in runoff of freshwater, and land based pollutants. | Human action or Natural variation | Short-Long term | Local-Regional-Global |
Increases or decreases in wind velocity on a local basis | Increased or decreased quality of seed dispersal through wind | Human action | Short term | Global |
Increases in nutrients and changes in chemical composition of freshwater bodies. Physical alterations of turbidity and water flow. | Increased nutrients and/or chemicals can upset chemical condition of freshwater. | Human action | Short term | Regional |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Displaces or reduces population of biota. Also reduces thickness of soil water films and inhibits enzymes. | Disturbance of biotic and abiotic factors pose environmental constraints that can temporarily or indefinitely affect decomposition sensitivity. Changes soil’s environment, modifying processes. | Human action | Long term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Increased or decreased availability of solar energy for algae, which affects how well species are able to grow, survive, and perform their bio-remediation function. | Increased or decreased bio-remediation performed by algae. This variation occurs on seasonal or annual basis (e.g. solar radiance is lower in winter or when cloud cover is dense) | Natural variation | Short term | Global |
Species (of pathogens or their hosts) range shifts due to change in climate conditions | Usual predator-prey relationships change and harmful species can spread into areas where they are not predated on | Human action | Long term | Global |
Permafrost (frozen soil layer) melting due to higher average annual temperatures | Methane gas bubbles trapped in soil released as it melts, increasing emissions to the atmosphere, exacerbating the warming effect in the short term and causing a positive feedback in the long term as warming continues to melt permafrost releasing more methane. | Human action | Long term | High latitudes |
Climate change driven rising temperatures, changes in rainfall patterns and an increase in extreme weather events threatens fodder crop production. | Models suggest substantial risks to the volume, volatility, and quality of animal feed supply chains despite some gains in productivity. | Human action | Long-term | Global |
Rising temperatures and changing rainfall patterns creates the risk of crop failure, e.g. the 2010 Russian heatwave and the 2012 US Midwest drought. | Decreasing yields of cereals, contributing to higher food prices and a greater demand than supply. | Human action | Long-term | Global |
Climate anomalies cause changes to the photosynthetic cycle and global greening patterns. | There is a quantitative link between climate anomalies such as the El Nino Southern Oscillation and weather events. There is evidence of reduced vegetation greenness during ENSO events in sub-tropical parts of the southern hemisphere impacting fibre provision. | Natural variation | Medium term | Semi-arid vegetation in the southern hemisphere |
Decreased ability of plants to perform filtration and sequestration of pollutants. | Decreased filtration and sequestration of pollutants by plants. | Natural variation | Short term | Regional |
Alters conditions: temperature, humidity, rainfall. | Climatic conditions affect air pollution levels and absorption by vegetation. Climate changes may alter vegetation. Droughts may cause disruption of water for sound attenuation. | Human action or Natural variation | Short-Mid-term | Global |
Increases or decreases in wind velocity. | Increases or decreases in dispersal distance through wind. | Natural variation | Short term | Local |
Increases or decreases in wind velocity on a local basis | Increased or decreased quality of seed dispersal through wind | Natural variation | Short term | Local |
Alteration of biochemical and chemical reactions. | Biochemical reactions involved in decomposition and fixation processes are temperature dependent and have high temperature sensitivity. Low temperatures cause slow rates of chemical weathering and rely on physical processes. Warmth favours chemical weathering over physical, leading to deeper weathering. | Human action | Long term | Global |
Alteration of biochemical and chemical reactions. | Biochemical and chemical reactions involved in decomposition and fixation processes are temperature dependent and have high temperature sensitivity. | Human action | Short-Long term | Global |
Can lead to changes in a plant’s ability to keep cool. | Plants can dry out in excessive transpiration induced by aridity. | Natural variation | Short term | Local |
Changes in nutrient cycles | Decreased chemical condition of freshwaters | Human action | Long term | Global |
Changes in salinity and temperature. | Variations in chemical condition of salt water. The magnitude of the effect of this variation is minor as systems are adapted to tolerate them. | Natural variation | Short term | Global |
Minor changes in nutrient cycles, chemical balances, shape of water bodies, and species function. | No major changes in chemical condition of freshwaters as each of the components have adapted to this natural variation. | Natural variation | Short term | Global |
Drivers of environmental change:
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Increased evaporation rates and reduced freshwater flow resulting in deterioration of the water quality. | Reduction of the dilution capacity of point source effluents. Decline in water quality is primarily caused by favourable conditions for the development of algae blooms (high water temperatures, long residence times, high nutrient concentrations). Changes in water temperature, eutrophication, major elements, and some heavy metals and metalloids. | Natural variation | Short term | Global |
Decrease in the amount of water available to disperse seeds | Decreased seed dispersal by water bodies | Natural variation | Short term | Local |
Drought displaces or reduces populations of biota. Also reduces thickness of soil water films and inhibits enzymes. | Disturbance of biotic and abiotic factors poses environmental constraints that can temporarily or indefinitely affect decomposition sensitivity. | Human action | Short-Long term | Local-Global |
Increases in nutrients and changes in chemical composition of freshwater bodies. Physical alterations of turbidity and water flow. | Increased nutrients and/or chemicals can upset chemical condition of freshwater. | Human action | Short term | Regional |
Anthropogenic climate change is leading to more frequent and severe droughts. Severe decreases in water flows and alterations to the geological characteristics of water bodies (e.g. desiccation of entire rivers). | Decrease in surface water provision. | Human action | Long term | Local-Regional-Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Decreases in the number of plants along a water course. Physical alteration of water bodies. | Reduced number of seed dispersing plants. Changes to the distance and direction of seed dispersal through water bodies, resulting in decreased seed dispersal in the case of long term flooding, or increased seed dispersal in the case of short term flooding. | Natural variation | Short term | Local |
Alters biological soil community, structural properties of parent material by exposure to water. | Changes soil’s environment and modifies processes. | Human action | Long term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Natural changes in local geo-morphological characteristics of water bodies lead to increase or decrease in volumes of water flow and alter flow direction. | Increase or decrease in surface water provision. | Natural variation | Short-Long term | Local-Global |
Increased or decreased water flows through landscapes | Increased or decreased water balances within landscapes | Natural variation | Short term | Local-Regional |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Alters freshwater supply and resources. | Changed habitat dynamics, reduction in stability of blue carbon habitats. | Human action | Short term | Coastal ecosystems |
Conversion of wetlands for commercial purposes and resource extraction leads to loss of regional climate regulating function. | Conversion of wetlands causes the average temperature to increase by 0.77?C in all four seasons. | Human action | Medium term | Global |
Certain non-fossil aquifers are no longer being replenished due to alterations made to land cover, meaning that if groundwater is abstracted aquifers will be depleted. | Loss of groundwater provision on a local basis. | Human action | Medium term | Local |
Freshwater diversion from estuarine areas | Habitat loss leads to disruption of connectivity between spawning, nursery and adult stage habitats. | Human action | Short-Mid-term | Local-Regional |
Lower species mobility, thus decreased ability to disperse seeds. Altered wind and hydrological processes within a given area will affect how far seeds are dispersed. | Decreased seed dispersal by animals | Human action | Short-Mid-term | Global |
Declines in pollinator populations due to reduced access to food and nesting resources (16.5 % of vertebrate pollinator species are threatened with global extinction; in Europe, 9% of bee and butterfly species are threatened, and populations of 37% of bees and 31% of butterflies are declining) | Decreased pollination services during the peak period of pollination (i.e. spring for most crops in temperate zones). 5-8 % of global crop production would be lost if pollination services ceased. | Human action | Short term | Regional |
Changes in intensity and extension. | Vegetation alteration can degrade or cause loss of service. | Human action | Short term | Local |
Alters water flow, rock structure, topographic characteristics which alter soil composition | Changing decomposition and fixation processes. | Human action | Long term | Local |
Alters water flow and availability, and rock structure and topographic characteristics which alter soil composition. | Changing decomposition and fixation processes | Human action | Short term | Local |
Disturbance of natural water flows and sedimentation in catchments leading to geophysical alterations of water bodies Water flow will increase or decrease depending on local conditions. | Increase or decrease in provision of surface water. If a certain volume of water is removed for industrial use and is not returned afterwards, then the total volume of surface water in will be decreased by that volume. Increased sedimentation cuts light to animals, leads to nutrient blooms and loss of oxygen. | Human action | Short term | Local |
Anthropogenic climate change is leading to severe decreases in water flows and alterations to the geological characteristics of water bodies (e.g. desiccation of entire rivers). | Decrease in surface water provision. | Human action | Long term | Local-Regional-Global |
Changes to the way water flows through landscapes | Increased or decreased availability of water at the local and landscape level. | Human action | Short term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Alters freshwater supply and resources. | Changed habitat dynamics, reduction in stability of blue carbon habitats. | Human action | Short term | Coastal ecosystems |
Increased vulnerability to change and pollution. | Streams and rivers near newly drilled natural gas wells are vulnerable to: sediment runoff, reduced streamflow and possible contamination from introduced chemicals and the resulting wastewater. | Human action | Short term | Global |
Water quality, depth, turbidity, salinity and nutrient changes will lead to changes in plant community structure and health, and decreases or disappearance of biotic communities and habitat health and complexity. | Habitat loss leads to disruption of connectivity between spawning, nursery and adult stage habitats. Displacement or local extinction of adult populations, disrupting spawning patterns. Sedimentation due to shipping activity reduces light penetration, settlement success, survival, and diversity of habitats such as coral. | Human action | Short term | Local |
Over use by humans for agriculture, energy generation, other non-drinking purposes, and other industries leads to decrease in water flow and volume. | Decrease in surface water provision. Unless water is returned in equal volumes to water bodies after abstraction, then the volume of surface water provided through water bodies will be reduced by the amount that is not returned. | Human action | Short term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Changes in sediment regime. | Sedimentation causes reservoir infill and a reduction in sediment supply downstream to create wetland features | Human action | Long term | Aquatic environments |
The sealing of soils by urban construction in urban areas modifies the local climate. | Vegetation no longer regulates climate, leading to even higher temperatures. | Human action | Short term | Urban areas |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Overfertilization and nutrient enrichment lead to algal overgrowth and loss in cover and diversity of habitats. | Habitat loss leads to disruption of connectivity between spawning, nursery and adult stage habitats. | Human action | Short-Mid-term | Local-Regional |
Intensive agriculture (i.e. large homogenous fields with regular and intensive tillage, grazing, and/or mowing) and associated chemical use (e.g. pesticides such as neonicotinoids) has abroad range of lethal and sub-lethal effects on pollinator species. Pollinator habitat loss and disruption of daily activities. Higher rates of species mortality and reduced species survival. More specialised pollinator species (i.e. those that are highly dependent on a specific feature and are not adaptable) are more heavily affected by this impact. | Decreased pollination services. The magnitude of loss of pollination will depend on the presence of other more robust and adaptable species. | Human action | Short term | Local-Global |
Addition of organic or inorganic matter results in changes in diversity in the soil and the microbial composition. | Alters matter composition and microbial community structure which in turn affects decomposition rate. | Human action | Short-Long term | Local-Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Displacement or local extinction of biotic communities. | Alien species altering ecology of system, e.g. displacing relevant species to maintain services. | Human action | Short-Mid-term | Local |
Invasive species can deviate pollinators from the plants they normally pollinate (in the case of invasive plants) or can outcompete native pollinators (in the case of invasive pollinators) | Decreased pollination services from native pollinators to native plants. | Human action | Short term | Local |
Reduced species survival and reduced ability of native species to disperse seeds. Reduced ability of water bodies to effectively disperse seeds. | Decreased seed dispersal by native species, and possibly less efficient seed dispersal where invasive species replace native species. Reduced water mobility due to invasive plants, leading to reduction in seed dispersal distance by water bodies. | Human action | Short term | Local |
Alteration of chemical properties of salt water bodies. | Decreased chemical quality of salt water. | Human action | Short term | Local |
Altered chemical balances of freshwater bodies and competition with native species | Decreased chemical condition of freshwaters resulting from lower species diversity, loss of native species, and changes in nutrient and chemical balances. | Human action | Short term | Local-Regional |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Affects health of ecosystems, alters ocean currents and changes biotic communities. | Warming and acidification ocean creates thermal stress (e.g. coral bleaching), sea level rise, sedimentation, Altered ocean currents lead to changes in connectivity and temperature regimes. Ocean acidification leads to a reduction in pH levels and decreases growth rates. | Human action or Natural variation | Short-Long term | Local-Regional-Global |
Decreased ability of species to uptake nutrients. | Decreased chemical quality of salt water. | Human action | Short term | Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Reduction in dilution service potential. | Both point and non-point source pollutants results in eutrophication and coastal economic damage, e.g. beach closures. | Human action | Short term | Coastal ecosystems |
Habitat loss due to overfertilization and toxics contamination | Habitat loss due to clouding of coastal waters by sediment from run-off and toxics which leads to contamination. | Human action | Short-Mid-term | Local-Regional |
Lower quality of groundwater. | Lower quality of groundwater. | Human action | Medium term | Local |
Alters conditions: temperature, humidity, rainfall | Pollution may alter presence and conditions of urban and suburban vegetation, may diminish plants’ capacity of gas absorption. | Human action | Short-Mid-term | Global |
Altered wind dynamics and the ability of wind to disperse seeds | Decreased dispersal distance of seeds by wind | Human action | Short term | Local |
Microbiota are sensitive to metal pollution. Toxicity of heavy metals displaces exchangeable nutrients from binding sites. | Acid rain and pollution, acidity in air, etc. alters weathering agents in the environment (water, soil, air). | Human action | Long term | Local-Global |
Microbiota are sensitive to metal pollution. Toxicity of heavy metals displaces exchangeable nutrients from binding sites. | Pollution inhibits litter decomposition. Decomposition is sensitive to pollution and metals contaminants at the microbial level. Metal pollution also makes plant matter difficult to decompose. May lead to algal blooms. | Human action | Short-Long term | Local-Global |
Alterations to nutrient cycles and balances resulting from pollution due to human activities. | Reduced quality of water resources. | Human action | Short term | Global |
Suppressed rainfall in highly polluted areas due to reduced efficiency of clouds at releasing precipitation. | Decreased water balance and disrupted hydrological cycle in polluted areas | Human action | Short term | Local |
Alteration of chemical composition of salt water bodies and decreased pH of salt water. | Decreased quality of salt water. | Human action | Short term | Global |
Alteration of nutrient cycles (e.g. leading to algal blooms and eutrophication), pH level, and changes to chemical composition of salt waters. Algal blooms smother sea grass. Eutrophication leads to creation of “dead zones” in the ocean, which are areas that are entirely deprived of oxygen. | Decreased chemical quality of salt water. | Human action | Short term | Local |
Increases in nutrients, sediments and changes in chemical composition of freshwater bodies, decreased species survival. | Decreased chemical condition of freshwaters. | Human action | Short term | Regional |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Caused an annual 1% decline in phytoplankton in worlds’ oceans. | Less carbon absorbed by phytoplankton for photosynthesis. | Human action | Short term | Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Mixed layers of water. | Well mixed layers increase dilution potential of seawater. | Natural variation | Short term | Global |
Affects health of ecosystems, leads to altered ocean current and water runoff changes. | Changes in storm patterns leads to destruction of structures. Changes in precipitation create increases in runoff of freshwater, and land based pollutants. | Human action or Natural variation | Short-Long term | Local-Regional-Global |
Increases or decreases in wind velocity on a local basis | Increased or decreased quality of seed dispersal through wind | Human action | Short term | Global |
Increases in nutrients and changes in chemical composition of freshwater bodies. Physical alterations of turbidity and water flow. | Increased nutrients and/or chemicals can upset chemical condition of freshwater. | Human action | Short term | Regional |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Fragmentation of the river system. | Reduced dilution ability as river flow is disrupted. Increased human presence creates more effluent flow exacerbating the problem. | Human action | Short term | Global |
Depletion of groundwater contained in aquifers. Groundwater in some areas is being used at rates exceeding the rate at which natural processes can replenish stocks. Groundwater represents 18% of water used for agricultural purposes and 13% of that used for energy production and industry purposes. | Decreased provision of groundwater. Unsustainable water abstraction from aquifers for human use is leading to drastic water shortages. | Human action | Medium term | Local |
Reduction in the amount of water in natural resources (e.g. surface and groundwater) | Changes in when and where water returns to the atmosphere, affects local or regional water balances and precipitation patterns. | Human action | Medium term | Local-Regional |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Mixed layers of water. | Well mixed layers increase dilution potential of seawater. | Natural variation | Short term | Global |
Climatic anomalies (e.g. ENSO) create deficits and excesses in temperature and precipitation. | Regulation of regional climate is heavily impacted, e.g. an El Niño is associated with warm and very wet weather months in April–October causing major flooding in southern hemisphere countries such as Peru and Ecuador. | Natural variation | Long-term | Regional |
Pollution resulting from anthropogenic climate change increases in rainfall. Contamination of aquifers and decreased quality of groundwater. | Lower quality of groundwater resulting from increased leaching of contaminants (e.g. nitrates) contained in rain water. | Human action | Medium term | Local |
Increase or decrease of water available in groundwater sources. | Seasonal or annual variation (i.e. increase or decrease) in groundwater provision to the bodies that depend on it (e.g. rivers, lakes, wetlands). | Natural variation | Short term | Global |
Alters conditions: temperature, humidity, rainfall. | Climatic conditions affect air pollution levels and absorption by vegetation. Climate changes may alter vegetation. Droughts may cause disruption of water for sound attenuation. | Human action or Natural variation | Short-Mid-term | Global |
Increases or decreases in wind velocity. | Increases or decreases in dispersal distance through wind. | Natural variation | Short term | Local |
Increases or decreases in wind velocity on a local basis | Increased or decreased quality of seed dispersal through wind | Natural variation | Short term | Local |
More unstable precipitation patterns and increases in global temperature. | Increases or decreases in water balance at a local and regional scale | Human action | Short term | Global |
Increases or decreases in the amount of rainfall and solar energy available on a regional/local basis. | Increased or decreased water balances within landscapes. | Natural variation | Short term | Regional |
Alteration of biochemical and chemical reactions. | Biochemical reactions involved in decomposition and fixation processes are temperature dependent and have high temperature sensitivity. Low temperatures cause slow rates of chemical weathering and rely on physical processes. Warmth favours chemical weathering over physical, leading to deeper weathering. | Human action | Long term | Global |
Alteration of biochemical and chemical reactions. | Biochemical and chemical reactions involved in decomposition and fixation processes are temperature dependent and have high temperature sensitivity. | Human action | Short-Long term | Global |
This affects watershed- or catchment-level water flows (i.e. increase or decrease in volume of water flowing through water bodies). | Increase or decrease in surface water provision. | Natural variation | Short term | Global |
Changes in nutrient cycles | Decreased chemical condition of freshwaters | Human action | Long term | Global |
Changes in salinity and temperature. | Variations in chemical condition of salt water. The magnitude of the effect of this variation is minor as systems are adapted to tolerate them. | Natural variation | Short term | Global |
Minor changes in nutrient cycles, chemical balances, shape of water bodies, and species function. | No major changes in chemical condition of freshwaters as each of the components have adapted to this natural variation. | Natural variation | Short term | Global |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Surface area of coastal habitats reduced by rising sea level. | Removal of organic component of coastal sediments and their burial. Loss of carbon sink. | Human action | Long term | Coastal ecosystems |
Affects health of ecosystems, alters ocean currents and changes biotic communities. | Warming and acidification ocean creates thermal stress (e.g. coral bleaching), sea level rise, sedimentation, Altered ocean currents lead to changes in connectivity and temperature regimes. Ocean acidification leads to a reduction in pH levels and decreases growth rates. | Human action or Natural variation | Short-Long term | Local-Regional-Global |
Contamination of coastal aquifers with salt water. | Lower quality of groundwater. Higher salinity might affect whether or not groundwater can be used for certain industrial or agricultural processes. | Human action | Long term | Local |
Likely response | Effect of variability on services provision | Human action or natural variation | Timescale | Spatial Characteristics |
---|---|---|---|---|
Concentration of marine litter, especially plastics. | Micro plastics tend to accumulate on certain coastal areas depending on winds and currents as well as at major oceanic fronts known as gyres. | Natural variation | Long term | Coastal ecosystems |
Increase in freshwater due to melting of ice caps linked to climate change leads to weakening or collapse of the ocean thermohaline circulation. | Air-sea carbon uptake substantially reduced. | Human action | Long term | Global |
Breakdown in thermohaline circulation caused by rapid glacial melting and influx of freshwater to oceans. | Rapid climate cooling and loss of regional climate regulating function. | Human action | Long-term | Regional seas and smaller regions of ocean |
Affects health of ecosystems, alters ocean currents and changes biotic communities. | Warming and acidification ocean creates thermal stress (e.g. coral bleaching), sea level rise, sedimentation, Altered ocean currents lead to changes in connectivity and temperature regimes. Ocean acidification leads to a reduction in pH levels and decreases growth rates. | Human action or Natural variation | Short-Long term | Local-Regional-Global |
Sudden changes in chemical balances and pH. | Variations in chemical condition of salt water. The magnitude of the effect of this variation is minor as systems are adapted to tolerate them. | Natural variation | Short term | Global |